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WHAT ARE WE CALCULATING 7

P(p,q) is the probability distribution at a given thermodynamic
condition.

_ J4q a5 A(q) P(P,q)
Jdd ap P(P,q)
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WHAT ARE WE CALCULATING 7

6N dimensional integral
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Figure : Integral by quadrature
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WHAT ARE WE CALCULATING 7

6N dimensional integral
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Figure : Integral by importance sampling
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WHAT ARE WE CALCULATING 7

t should be "long enough"!

Boltzmann’s Ergodic Conjecture (1871)
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IS MY SIMULATION TIME LONG ENOUGH 7?7

can(A) = (A(t) - A(A +t))s
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IS MY

Figure :
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SIMULATION TIME LONG ENOUGH 7?7

Auto correlation function for the potential and kinetic energy
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WHY NOT MARKOV CHAIN MONTE CARLO 7

Probability of acceptance in MCMC :

a(q — ¢') = min(1, e—ﬁ[V(q’)—V(q)])

Metropolis et al. JCP (1953)
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WHY NOT MARKOV CHAIN MONTE CARLO 7

Probability of acceptance in MCMC :

a(q — q') = min(1, e*ﬁ[V(q/)*V(Q)])

© High acceptance vs "making things happen".
©Q Curse of large system size.

@ Generalized "smart moves".

Metropolis et al. JCP (1953)
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MOLECULAR DYNAMICS

o bi? .oV p
H= V .. ’ D= -5 & q= -
§2mi +V(ar, - asn); P g =
dH/dt = 0
Figure : Dynamics conserves energy

Rahman PR (1964)

6 venkat kapil MD



HOW TO INTEGRATE EQUATIONS OF MOTION?
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HOW TO INTEGRATE EQUATIONS OF MOTION?

Phase space vector :
X = (p17 -» P3N, d1, - q3N) .

How to evolve p & q 7

Tuckerman et al.

venkat kapil
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HOW TO INTEGRATE EQUATIONS OF MOTION?

Phase space vector :
X = (p17 -y P3N, d1; -+ q3N) .

How to evolve p & q 7

X(t) = e %(0)

The classical propagator!

Tuckerman et al. JCP (1992)
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HOW TO INTEGRATE EQUATIONS OF MOTION?

Phase space vector :
X = (p17 -y P3N, d1; -+ QSN) .

How to evolve p & q 7

£(t) = e £(0)

The classical propagator!

(t) = ellmt £(0)
= e 5(0)
— [eiLth+inAt]M )—(»(0)
~ [einAt/2 .eiLth . einAt/Z]M )—(»(O)

eT(A+B) _ [eAT/2A . eATB X eAT/2A]M + O(AT—S() AT =7/M

Tuckerman et al. JCP (1992), Trotter PAMS (1959)
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HOW TO INTEGRATE EQUATIONS OF MOTION?

}—(o(At) _ [einAt/Q _eiLth _einAt/2] )—(*(0) -7

Tuckerman et al. JCP (1992)
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HOW TO INTEGRATE EQUATIONS OF MOTION?

)?(At) _ [einAt/Q _eiLth _einAt/2] )?(0) -7

Given that:
. B a
ellaAt _ +E AL g
. (oA a
ellpAt _ = F5 At 55

(S

% f(x,y) = f(x+c,y)

Tuckerman et al.
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HOW TO INTEGRATE EQUATIONS OF MOTION?

)?(At) _ [einAt/Z _eiLth _einAt/2] )?(0) -7
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s B a
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HOW TO INTEGRATE EQUATIONS OF MOTION?

)?(At) _ [einAt/Z _eiLth _einAt/2] A(O) -7
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s B a
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HOW TO INTEGRATE EQUATIONS OF MOTION?
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HOW TO INTEGRATE EQUATIONS OF MOTION?

)E(At) _ [einAt/Z _eiLth _einAt/2] )?(0) -7

Given that:
s B a
ellaAt _ +E AL g
. (oA a
ellpAt _ = F5 At 55

The Velocity Verlet algorithm!

Tuckerman et al.
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HOW TO CHOOSE THE TIME STEP?

0 1000 2000 3000 4000 cm™!

Figure : Presence of multiple time scales in a system
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HOW TO INTEGRATE WITH MULTIPLE TIME STEPS

Figure : Separation of time scales

bi 1ir sr
H= —+V . A% .., Q3
EO om; + (a1, .- asn) + (a1, .-, d3N)

Tuckerman et al. JCP (1992)
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HOW TO INTEGRATE WITH MULTIPLE TIME STEPS

Figure : Separation of time scales

Z b +V¥(ar, - gan) + VI (ai, -, dsn)

p o oVt 0 over o

= — L Llr Lsr
93 85 o o7 op  Latily Ti

Tuckerman et al.
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HOW TO INTEGRATE WITH MULTIPLE TIME STEPS

Figure : Separation of time scales

Z(At) = ™At 2(0)

- TSt T 1r .
— e1[1Lq+1Lp HL]At X(O)

~ eiLifAt/Q[eiLifAtJriLth]eiL;rAtﬂ i(O)

Tuckerman et al.
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HOW TO INTEGRATE WITH MULTIPLE TIME STEPS

Figure : Separation of time scales

1ir
pop— G5 S
Velocity Verlet for M steps with "short range" forces with At/M.

oV At
P=P~ g%

Tuckerman et al. JCP (1992)
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MTS: THE REALITY
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Figure : Range separation is trivial

[http://wuw.omnia.md/blog/2014/11/6/how-to-train-your-force-field]
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MTS: THE REALITY

What about the ab inito framework 7

[ o9 £ V()] () = B ()
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MTS: THE REALITY

Figure : Separation of time scales
3N p.2
H=23 o+ V(ar - aan) + (Vi asx) = V¥(ar, - aan))
i=0 ©

Kapil et al. JCP (2016), Marsalek et al. JCP (2016), John et al. PRE (2016)
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MTS: THE REALITY
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Figure : How to choose the '"cheap potential"?

Kapil et al. JCP (2016), Marsalek et al. JCP (2016), John et al. PRE (2016)
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HOW TO INTEGRATE EQUATIONS OF MOTION: WRAPPING
UP

© Velocity Verlet comes from the classical propagator.
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HOW TO INTEGRATE EQUATIONS OF MOTION: WRAPPING
UP

© Velocity Verlet comes from the classical propagator.
@ Error decreases systematically as (At)™2.
© Further decomposition leads to a MTS integrator.

© Time-reversible and symplectic.
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MOLECULAR DYNAMICS : AT CONSTANT TEMPERATURE

How to sample a NVT ensemble for system given by the Hamiltonian ?

3N
H(p,qd) = Z b + V(ai, - 4an)

— 2m;
i=0
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MOLECULAR DYNAMICS : AT CONSTANT TEMPERATURE

Generate (P,q) such that:

o~ BH(B.)

P09 = T i5age- G

Do Hamilton’s equations of motion conserve P(p,q) ?

15  venkat kapil
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MOLECULAR DYNAMICS : AT CONSTANT TEMPERATURE

Generate (P,q) such that:

P(p,q)

o~ BH(B.)

~ [ dpdge PHEA)

Do Hamilton’s equations of motion conserve P(p,q) ?

venkat kapil

[iLu P(5,d) = 0]

MD



15

MOLECULAR DYNAMICS

: AT CONSTANT TEMPERATURE

Figure :

venkat kapil

A problem of ergodicity
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MOLECULAR DYNAMICS : AT CONSTANT TEMPERATURE

Figure : Andersen’s thermostat

Andersen JCP (1980)

15 venkat kapil MD



MOLECULAR DYNAMICS : AT CONSTANT TEMPERATURE

Figure : Andersen’s thermostat

Andersen JCP (1980)
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MOLECULAR DYNAMICS : AT CONSTANT TEMPERATURE
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Figure : Andersen’s thermostat

Andersen JCP (1980)
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MOLECULAR DYNAMICS : AT CONSTANT TEMPERATURE

Figure : Andersen’s thermostat

Andersen JCP (1980)
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DETERMINISTIC THERMOSTATS

Nose= Hoover thermostat:

Bil=u

=L 5=-0 % n=p
I?]’ aq Qv S

Nosé JCP (1984), Hoover PRA (1985)
MD
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DETERMINISTIC THERMOSTATS

Nose= Hoover thermostat:

1 S Q

Bil=u

=L 5=-0 % n=p
I?]’ aq, Qv S
Q@ Not ergodic. Must use chains.

Nosé JCP (1984), Hoover PRA (1985)
MD
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DETERMINISTIC THERMOSTATS

Nose= Hoover thermostat:

; éza

Bil=u

=L 5=-0 % n=p
I?]’ aq, Qv S
Must use chains.

© Not ergodic.
© Not rotationally invariant.

Nosé JCP (1984), Hoover PRA (1985)
MD
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DETERMINISTIC THERMOSTATS

Nose= Hoover thermostat:

; éza

Bil=u

GoB 5o OV 5B 5
I?]’ aq Qv S

Q@ Not ergodic. Must use chains.

© Not rotationally invariant.

© Integrating equations of motion is not pretty

Nosé JCP (1984), Hoover PRA (1985)
MD
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STOCHASTIC THERMOSTATS

A white noise Langevin thermostat

Figure
Langevin thermostat:
ER ov S > o =
=5 P= "9 — P4 m 2298716 (E(t) - £(0)) = 6(t)

Schneider et al. PRB (1978), Bussi et al.

17 venkat kapil

JCP (1992)
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STOCHASTIC THERMOSTATS

Langevin thermostat:
ER I ov L —= o o
0= P=—pg +1i' 2298716 (E(t) - £(0)) = 8(t)
@ Ergodic
PRB (1978), Bussi et al. JCP (1992)
MD

Schneider et al.
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STOCHASTIC THERMOSTATS

Langevin thermostat:

O B+ 2o e () €(0) = 6(t)

=B 5=
m'’ oq

@ Ergodic
© Linear equations

Schneider et al. PRB (1978), Bussi et al. JCP (1992)
MD
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STOCHASTIC THERMOSTATS

Langevin thermostat:

N 5wl /5 T8 (&) €0)) = o(t)

=B 5=
m'’ oq

@ Ergodic
© Linear equations
© Integration very stable and easy.

Schneider et al. PRB (1978), Bussi et al. JCP (1992)
MD
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STOCHASTIC THERMOSTATS
Langevin thermostat:
S =B VG (E)

I .
G==1 P=—5z—D+1
m aq

@ Ergodic
© Linear equations
© Integration very stable and easy.
iL =iL, +iLy; iL, P(p,q) =0
PRB (1978), Bussi et al. JCP (1992)
MD

Schneider et al.
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STOCHASTIC THERMOSTATS

Langevin thermostat:
L I 2 A -
Q=g P=—gz —W+m2V2a76 ()

@ Ergodic
© Linear equations
© Integration very stable and easy.

iL =iL, +iLy; iL, P(5,§) =0

LAt o (il At/2 (iLuAt L, At/2

Schneider et al. PRB (1978), Bussi et al. JCP (1992)
MD
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STOCHASTIC THERMOSTATS

Langevin thermostat:

I p 5 ov o 1/ - g =
G=gi B=—ge — B +m V2ETE (@) E0) = 4()

@ Ergodic
© Linear equations
© Integration very stable and easy.

il = iL, +iLy; iL, P(5,d) =0

LAt o (il At/2 (iLuAt L, At/2

H = AH + AK

AH = Change in total energy during the Hamiltonian step
AK = Change in kinetic energy during the thermostat step

Schneider et al. PRB (1978), Bussi et al. JCP (1992)

17 venkat kapil

MD



SAMPLING EFFICIENCY

Can we measure how efficient a Langevin thermostat is 7
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Figure : Under damped, optimally damped and over damed regimes
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SAMPLING EFFICIENCY

Can we measure how efficient a Langevin thermostat is 7

T

Figure :

venkat kapil

Under damped, optimally damped

and

over damed regimes
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GENERALIZED LANGEVIN EQUATION

K
I
Bil=u

Ty
Il

T - [ o KO -9+ V25E () €0) = HE

Figure : A generalized Langevin equation (GLE)thermostat

Zwanzig, Nonequilibrium statistical mechanics (2001)
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A GENERALIZED LANGEVIN EQUATION

K(t) and H(t) can be expressed in terms of the drift and the
diffusion matrix.

Zwanzig, Nonequilibrium statistical mechanics (2001)
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A GENERALIZED LANGEVIN EQUATION

Sampling efficiency over a wide frequency range?

_Sampling efficiency

Figure : Optimizing a merit function of sampling efficiency

Ceriotti et al. JCTC (2010)
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A GENERALIZED LANGEVIN EQUATION

Sampling efficiency over a wide frequency range?

2ampling efficiency

T ™y

1 E

107
X
107 :
10_3 2 PP . tiium -3
10 1 10
w
Figure : Optimizing a merit function of sampling efficiency

Ceriotti et al. JCTC (2010)
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A GENERALIZED LANGEVIN EQUATION

Sampling efficiency over a wide frequency range?

Sampling efficiency

1E
107k
x
IO"Zg
E /
E/
103k .
10°
w
Figure : Optimizing a merit function of sampling efficiency

Ceriotti et al. JCTC (2010)
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A GENERALIZED LANGEVIN EQUATION

Sampling efficiency over a wide frequency range?

Sampling efficiency

Figure : Optimizing a merit function of sampling efficiency

Ceriotti et al. JCTC (2010)
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Exciting

A GENERALIZED LANGEVIN EQUATION

a narrow range of frequencies?

0.8F
< 0.6F
S
= 04f

0.2F

0.0

venkat kapil
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w/wy

10

Dettori et al. JCTC (2017)
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A GENERALIZED LANGEVIN EQUATION

Exciting a narrow range of frequencies?

Dettori et al. JCTC (2017)
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WRAPPING UP

© System + bath gives canonical sampling.

22 venkat kapil

MD



WRAPPING UP

© System + bath gives canonical sampling.
© Stochastic modelling of a bath.

22 venkat kapil

MD



WRAPPING UP

© System + bath gives canonical sampling.
© Stochastic modelling of a bath.

@ Propagation, ergodicity and conserved quantity v .

22 venkat kapil

MD



WRAPPING UP

© System + bath gives canonical sampling.
© Stochastic modelling of a bath.
@ Propagation, ergodicity and conserved quantity v .

© GLE gives both optimal and selective sampling.

22 venkat kapil MD



WRAPPING UP

© System + bath gives canonical sampling.
© Stochastic modelling of a bath.
@ Propagation, ergodicity and conserved quantity v .
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MOLECULAR DYNAMICS : AT CONSTANT PRESSURE

Figure : Sampling at constant volume

Andersen JCP (1980), Parinello et al. JAP (1981), Martyna JCP (1994), Bussi JCP (2009)
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MOLECULAR DYNAMICS : AT CONSTANT PRESSURE

0p0Q,000®
Oq 000 =

Figure : Sampling at constant pressure

Andersen JCP (1980), Parinello et al. JAP (1981), Martyna JCP (1994), Bussi JCP (2009)
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MOLECULAR DYNAMICS : AT CONSTANT PRESSURE

i=2 +aqg
m
L OV
p= a4 p
V = 3Va
& =3[V (Pint — Pexe) + 267"

JAP (1981), Martyna JCP (1994), Bussi JCP (2009)
D

Andersen JCP (1980), Parinello et al.
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MOLECULAR DYNAMICS : AT CONSTANT PRESSURE

iL =iL, +iLg; iL, Pnpr(P,q) = 0; iLg Pnpr(P,4) =0

Andersen JCP (1980), Parinello et al. JAP (1981), Martyna JCP (1994), Bussi JCP (2009)
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TAKE HOME

© Molecular Dynamics vs Monte Carlo.
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@ Louiville formulation gives robust integrators.
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TAKE HOME

© Molecular Dynamics vs Monte Carlo.
@ Louiville formulation gives robust integrators.
© Canonical sampling can be achieved by stochastic modelling.

© Density fluctuations, changes in cell, isotherms, stress-strain
curves can be computed by sampling the NPT ensemble.
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